2 8 N ov 2 00 8 On the deformation theory of structure constants for associative algebras
نویسنده
چکیده
Algebraic scheme for constructing deformations of structure constants for associative algebras generated by a deformation driving algebras (DDAs) is proposed. An ideal of left divisors of zero plays a central role in this construction. Deformations of associative commutative three-dimensional algebras with the DDA being a three-dimensional Lie algebra and their connection with integrable systems are studied in detail.
منابع مشابه
ar X iv : 0 81 1 . 47 25 v 2 [ m at h . R A ] 1 2 M ay 2 00 9 On the deformation theory of structure constants for associative algebras
Algebraic scheme for constructing deformations of structure constants for associative algebras generated by a deformation driving algebras (DDAs) is discussed. An ideal of left divisors of zero plays a central role in this construction. Deformations of associative three-dimensional algebras with the DDA being a three-dimensional Lie algebra and their connection with integrable systems are studied.
متن کاملOn the Deformation Theory of Structure Constants for Associative Algebras
An idea to study deformations of structure constants for associative algebras goes back to the classical works of Gerstenhaber 1, 2 . As one of the approaches to deformation theory he suggested “to take the point of view that the objects being deformed are not merely algebras, but essentially algebras with a fixed basis” and to treat “the algebraic set of all structure constants as parameter sp...
متن کامل. R A ] 2 2 N ov 2 00 4 BRANCH RINGS , THINNED RINGS , TREE ENVELOPING RINGS
We develop the theory of “branch algebras”, which are infinitedimensional associative algebras that are isomorphic, up to taking subrings of finite codimension, to a matrix ring over themselves. The main examples come from groups acting on trees. In particular, for every field k we construct a k-algebra K which • is finitely generated and infinite-dimensional, but has only finite-dimensional qu...
متن کاملAcademy of Sciences of the Czech Republic
First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section 6 we generalize the Maurer-Cartan equation to strongly homotopy Li...
متن کاملDeformation Theory
First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section 6 we generalize the Maurer-Cartan equation to strongly homotopy Li...
متن کامل